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Figure 1. Such a shift results in a decrease in the magnitude 
of Z).8''2 In order that the spectrum continue to fit a Hamil-
tonian, the separation between the z lines must decrease in a 
parallel fashion. Figures 1 and 2d show very clearly the de­
creasing separation between the z lines as the temperature is 
raised.15 

What is the nature of the new state of trimethylenemethane? 
Theoretical estimates16 of the difference in energy between the 
planar (0,0,0) and perpendicular (0,0,90) triplet trimeth-
ylenemethanes (I) range from 8l6a and 1016b to approximately 
17i6c,d,e kcal/mol. It may be argued that even the lowest of 
these values is too great to account satisfactorily for a trans­
formation in which it appears that rapid equilibration or av­
eraging occurs near — 150 0C. While the theoretical results can 
in no way alone be taken to rule out the (0,0,90) form as a 
possibility, they do encourage a search for alternative possible 
states of the triplet (I) which might be accessible under the 
conditions of the experiments described above. 

In their recent theoretical examination of trimethylene­
methane (I), Yarkony and Schaefer13c noted that when 
the 3tK2 ground state of trimethylenemethane was described 
as the 3B2 state of Ci1. symmetry, the energy was not 
changed.17 No further discussion of the 3B2 state has occurred 
and there have been no predictions that it might represent a 
stable minimum on any reaction pathway of the triplet I. It is 
intriguing to speculate, however, that the temperature de­
pendent splitting of the xy lines might be the result of the re­
versible interconversion of the 3E$2 and 3A2' states. Such an 
averaging between states of Dn, and Civ symmetry would 
provide an explanation for the observed temperature dependent 
splitting. It would also lead to an understanding of the decrease 
in the D value. Thus, if the molecule is transformed from D^h 
to Cix symmetry by way of an E' vibration, this would entail 
not only contraction of the central bond angle but also 
lengthening of the opposing carbon-carbon bond.18 The net 
effect would be an increased average separation between the 
two unpaired electrons and a consequent decrease in the value 
of D.]1 However, it is not intuitively obvious and it is corre­
spondingly unsettling, that what appears to be a normal vi­
brational mode, the contraction of the bond angle at the central 
carbon atom of I, should lead to a potential minimum. If so, 
this symmetry-breaking step would add a bizarre new di­
mension to the chemical and spectroscopic attributes of tri­
methylenemethane (I).19 
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Synthesis and Crystal Structure of 
c/s-Diammineplatinum a-Pyridone Blue 

Sir: 

The blue compounds formed from aqueous solutions of 
platinum(II) in the presence of amides have been a subject of 
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Table I. Selected Geometric Features of m-Diammineplatinum 
«-Pyridone Blue" 

Figure 1. Structure of [Pt2(N Hs)4(C5H4ON)2I2(NO3)S showing the 40% 
probability thermal ellipsoids and omitting noncoordinated nitrate ions 
and hydrogen atoms. Carbon atoms are not labeled. Primed atoms are 
related to unprimed atoms by a crystallographically required12 center of 
symmetry. 

study since the original report of "Platinblau" in 1908. 1 3 

Recent interest in these complexes was sparked by the dis­
covery that aquated products of the antitumor drug m-d i -
chlorodiammineplatinum(II) undergo a slow reaction with 
polyuracil, uracil, thymine, and related pyrimidines (1) to form 
blue complexes.4 The platinum pyrimidine blues have antitu­
mor activity of their own4'5 and are useful electron microscopic 
stains for DNA.6 Attempts to crystallize these blue complexes 
have been largely unsuccessful because they are oligomeric 
mixtures of varying degrees of hydrolytic instability.7 With 
synthetic insights provided by the detailed studies of Lerner7 

and the choice of a-pyridone (2) as the amide ligand,8 we have 
obtained a crystalline platinum blue and determined its 
structure by x-ray crystallography. 

uracil (R = H) 
thymine (R = CH3) 

Q-pyridone 2 

A mixture of c/5-diammineplatinum(II) hydrolysis prod­
ucts9 was prepared from 1 mmol of m-[(NHa) 2 PtCl 2 ] and 2 
mmol of silver nitrate in 6 mL of water. After removing the 
silver chloride by centrifugation, 1 mL of an aqueous solution 
containing 1 mmol of a-pyridone was added. The yellow so­
lution was adjusted to pH 7 with NaOH and left to stand for 
5 days in the dark at 37-40 0 C. Up to this point, the procedure 
closely parallels that employed in the synthesis of the platinum 
pyrimidine blues.4 The brown-green (sometimes blue) solution 
was then adjusted to pH I with concentrated nitric acid. An 
equal volume of a saturated aqueous sodium nitrate solution 
was then added. Upon standing, the blue solution yielded dark 
blue10 crystals which were filtered and washed exhaustively 
with 100% ethanol. Analytical" and x-ray crystallographic12 

data showed the composition to be [Pt2(NHa)4(CsH4-
ON)2J2(NO3)S. 

The structure of rij-diammineplatinum a-pyridone blue is 
shown in Figure 1. The geometry is summarized in Table I. 
Two planar c/s-diammineplatinum units are bridged by two 
a-pyridonate ligands. The average N - O bite distance of these 
ligands (2.31 (3) A) is shorter than the Pt-Pt bond length of 
2.779 A, and the two coordination planes are canted at an angle 
of 28.7°. This splaying effect, together with a 23° tortional 

Distance Angle Deg 

Ptl-Pt2 
Pt2-Pt2' 
P t I -Nl 
PU-N2 
P t I -NI I 
PU-N21 
Pt 1-03 
Pt2-OI2 
Pt2-022 
Pt2-N3 
P12-N4 
N1-N3 
N2-N4 

2.779 
2.885 
2.06 
2.06 
2.09 
2.01 
3.30 
2.06 
2.02 
2.02 
2.08 
3.63 
3.75 

P t l -P t2-P t2 ' 
P t 2 - P t l - 0 3 
N 1 - P H - N 2 
N3-Pt2-N4 
N l - P t I - N l 1 
N2-PU-N21 
N3-P t2 -012 
N4-P t2 -022 
N11-PU-N2I 
0 1 2 - P t 2 - 0 2 2 

164.5 
168.2 
88.5 
91.6 
89.3 
91.8 
87.4 
87.8 
90.1 
93.2 

Plane A 
Dihedral Angles 

Plane B Angle, deg 

PtI coord plane 
PtI coord plane 
PtI coord plane 
Pt2 coord plane 
Pt2 coord plane 
P t l -P t2 -Nl 
P t l -P t2-N2 

Pt2 coord plane 
Pyridone 1 
Pyridone 2 
Pyridone 1 
Pyridone 2 
P t l -P t2 -N3 
P t l -P t2 -N4 

28.7 
81.0 
61.8 
62.8 
86.2 
21.7 
23.9 

Hydrogen Bonding* 
Distances, A Angle, deg 

N3-H 0.95 
N 4-H 0.96 

H-022 ' 1.98 N3-H-022' 143 
H-012 ' 1.98 N4-H-012' 149 

" Atoms are labeled as in Figure 1. Standard deviations in bond 
lengths are 0.02 A and in interbond angles are 0.6° or less. * Hydrogen 
atoms (H) are bonded to the designated ammine nitrogen atoms. 
Hydrogen atoms were located on difference Fourier maps and have 
not been refined. 

twist about the Pt l -Pt2 bond axis, permits the nonbonded 
amine contacts N1-N3 and N2-N4 to average 3.69 A, a value 
consistent with the sum of the van der Waals radii.13 In addi­
tion, two a-pyridonate bridged dimers are linked across a 
crystallographically required12 center of symmetry by a 2.885 
A platinum-platinum bond that is reinforced by four hydrogen 
bonds between the coordinated ammines and the oxygen atoms 
of the a-pyridonate ligands (Table I and Figure 1). Since the 
unit cell also contains five nitrate ions, the platinum formal 
oxidation state in the zigzag (P t l -P t2-Pt2 ' angle = 164.5°) 
tetranuclear chain is 2.25.14 Two weakly bonded nitrate ions 
cap the two ends of this chain. Further elongation of the 
structure through additional Pt-Pt bonding is prohibited by 
the steric bulk of the a-pyridonate rings and the unavailability 
of additional hydrogen bonding groups at the chain ends.15 

This situation may be contrasted with that of the platinum 
pyrimidine blues, which can exist as oligomeric mixtures with 
up to 15 or more platinum atoms in the chain,7b16 and perhaps 
accounts for the crystallinity of c/s-diammineplatinum a-
pyridone blue. 

The structure may be compared with those of K2[Pt2-
(SO4J4(H2O)2], in which two platinum(III) atoms are bridged 
by four bidentate sulfate ligands and capped by two water 
molecules,17 and of Pt2(NHs)4P2O7 , where two m-diam-
mineplatinum(II) coordination spheres are doubly bridged by 
the tetradentate P 2 O 7

4 - ion.18 In the latter structure, the 
molecules are further associated in the crystal lattice through 
metal-metal and hydrogen bonding interactions that are 
strikingly similar to those observed for m-diammineplatinum 
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a-pyridone blue. The metal-metal distances in the sulfate 
(2.446 A), a-pyridonate (2.779 and 2.885 A), and pyrophos­
phate (3.22 and 3.11 A) bridged complexes reflect the extent 
of metal-metal bonding and are correlated with differences 
in their formal oxidation states, 3.0, 2.25, and 2.0, respec­
tively.19 

m-Diammineplatinum a-pyridone blue is unstable in 
neutral or alkaline solutions, judging by the diminution with 
time of the broad visible absorption band (Xmax 685 nm). The 
color of aqueous solutions of the compound is instantly dis­
charged by excess chloride ion and by reducing (dithionite, 
borohydride) or oxidizing (peroxide) agents. These reactions 
should be noted in conjunction with attempts to explain the 
antitumor activity of the platinum pyrimidine blues. 

The bridged oligomeric structure involving partially oxidized 
platinum atoms found in the present study most likely em­
bodies features shared by all amide containing platinum 
blues.2022 Moreover, the ability of m-diammineplatinum(II) 
to bond to the exocyclic keto oxygen atom of the deprotonated 
a-pyridone ligand requires that a similar binding mode be given 
serious consideration for the interaction of the antitumor drug 
m-dichlorodiammineplatinum(II) with DNA, RNA, and 
their constituents.24 
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Experimental Electron Density Distribution of Sodium 
Hydrogen Diacetate. Evidence for Covalency in a Short 
Hydrogen Bond 

Sir: 

In a typical hydrogen bond, the oxygen to oxygen distance 
is ~2.8 A with the hydrogen located ~1 A from one of the 
oxygens. In solids, however, considerable variation exists in 
O—O lengths, and examples are found which range down to 
a lower limit of ~2.4 A.' As the O- • -O distance decreases, the 
O—H distance increases until the hydrogen may be symmet­
rically located ~1.2 A from each oxygen. Since both O—H 
bonds are now equal, the extent of covalency (in contrast to the 
largely electrostatic interaction of "long" hydrogen bonds) is 
of great interest.2 

The electron density distribution in a crystal may be ob­
tained by combining accurate x-ray intensity measurements 
with neutron diffraction results.3 Quantitative comparisons 
between experimental charge density measurements and ex­
tended basis set„ab initio theoretical calculations have recently 
been made.3b We report here a low temperature x-ray and 
neutron diffraction study of the bonding in the short, sym­
metrical hydrogen bond of sodium hydrogen diacetate. 

Recent experimental electron density studies on several 
compounds (glycylglycine,4a a-glycine,4b 2-amino-5-chloro-
pyridine,4c and formamide4d) containing normal X—H- • -Y 
hydrogen bonds show a lack of charge buildup between the 
X—H donor and the acceptor Y, relative to isolated atoms. 
Theoretical calculations of the change in electron density on 
dimerization of various simple molecules (HCONFh,5" HF,5b 

and FhO50) predict a similar charge distribution between donor 
and acceptor. 

The deformation density is the difference between the ex-
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